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Abstract. Although shear-induced isotropic-to-lamellar transitions in ternary systems of oil,
water and surfactant have been observed experimentally and predicted theoretically by simple
models for some time now, their numerical simulation has not been achieved so far. In this
work we demonstrate that a recently introduced hydrodynamic lattice-gas model of amphiphilic
fluids is well suited for this purpose: the two-dimensional version of this model does indeed
exhibit a shear-induced isotropic-to-lamellar phase transition.

1. Introduction

Soft materials such as polymer solutions, liquid crystals, surfactants, and microemulsions
are frequently processed or utilized through the application of large deformations. Various
attempts have been made to investigate and characterize the behaviour of such complex
systems under conditions such as shear flow, for which there are numerous industrial
applications [1]. In this article we model the effect of linear shear flow on a hydrodynamic,
isotropic, sponge microemulsion phase using our recently introduced lattice-gas automaton
model for simulating self-assembling amphiphilic systems [2]. Experimental results [3–5]
as well as theoretical predictions [6] provide evidence for the presence of a transition
from an isotropic to a lamellar phase in such systems; however, we are unaware of
any model that is capable ofsimulating complex multi-phase flow of this sort. This is
because of the considerable difficulty involved in simulating ternary amphiphilic systems
under hydrodynamic flow, as well as in the implementation of the boundary conditions
required for shear. Traditional continuum-based fluid-dynamical modelling methods, such
as finite-difference, finite-element or volume-of-fluid techniques cannot viably deal with
the complexity involved; molecular dynamics, on the other hand, is too computationally
expensive.

Hydrodynamic lattice-gas models have evolved from simulating simple one-component
Navier–Stokes fluids [7] to two- and multi-component immiscible fluids [8]. We have
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recently extended such models to systems including amphiphiles [2]. Lattice-gas models
can reproduce fluid dynamics on mesoscopic and higher levels, permitting the investigation
of non-equilibrium (kinetic) behaviour over a broad range of length scales and timescales
[9]. The relative simplicity of the collision rules, the self-assembly of complex interfaces,
the presence of natural underlying kinetic fluctuations and the ease of implementation of
complex boundary conditions suggest that such hydrodynamic lattice-gas models are an
appropriate choice for the study of amphiphilic fluids under linear shear.

Linear shear flow has previously been applied to binary fluid systems in both two-
dimensional [10] and three-dimensional [11] lattice-gas models. We make use of the method
introduced in [11] for obtaining linear shear flow on the lattice, although some modification
is required for our ternary amphiphilic system.

As well as simulating the shear-induced isotropic-to-lamellar transition, this work was
undertaken in order to investigate further the validity of our amphiphilic model for complex
fluid simulation. This is the first application of the model to the simulation of known
physical effects associated with bulk fluid flow. In section 2 we briefly describe our model
and the numerical techniques that we have used to investigate the system under shear; our
simulations are presented in section 3 with concluding remarks in section 4.

2. Model and analysis

We perform simulations using our hydrodynamic lattice-gas model of amphiphilic systems
as previously published [2]. The model is a microscopic dynamical system which gives the
correct mesoscopic and macroscopic behaviour of mixtures of oil, water and surfactant. The
model is based on the two-fluid immiscible lattice gas of Rothman and Keller [12], which
we have reformulated using a microscopic particulate description to permit the inclusion of
amphiphile. Pursuing the electrostatic analogy with the Rothman–Keller model, we describe
surfactant molecules asdipoles, characterized by a dipole vectorσ. The model exhibits the
commonly formed equilibrium microemulsion phases, including droplets, sponge structures
(the two-dimensional analogue of the bicontinua in three dimensions) and lamellae [2].
Moreover, the lattice-gas model conserves momentum as well as the masses of the various
species, and correctly simulates fluid dynamical and scaling behaviour during self-assembly
of these phases [13, 14].

It should be noted that, formally, no lamellar phase can exist at finite temperature in
two spatial dimensions: thermal fluctuations are large enough to destroy true long-range
smectic order. We showed in our original paper that the stability of such relatively small and
artificially created structures is greatly enhanced compared to that observed in the absence
of surfactant or when amphiphilic interactions are extinguished in a ternary fluid [2]. A
more thorough investigation of the relative stability of the observed lamellae remains as
work for the future.

In order to incorporate the most general form of interaction energy within our model
system, we introduce a set of coupling constantsλ,µ, ε, ζ , in terms of which the total
interaction energy can be written as [2]

1Hint = λ1Hcc+ µ1Hcd+ ε 1Hdc+ ζ 1Hdd. (1)

The four terms on the right-hand side correspond, respectively, to the relative immiscibility
of oil and water, the tendency of surfactant to surround oil or water droplets, the propensity
of surfactant dipoles to align across oil–water interfaces and the contribution from pairwise
interactions between surfactant molecules. For consistency we choose these coefficients to
be of the same value for all simulations in this paper, which allow a sponge microemulsion
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phase to form in one part of the ternary phase diagram [2]; as such, these are

λ = 1.0 µ = 0.05 ε = 8.0 ζ = 0.5. (2)

As stated above, in order to investigate the effect of linear shear flow on a sponge
microemulsion phase we apply a technique devised by Olson and Rothman [11] for shearing
two-component binary lattice-gas fluids, which we have adapted to meet the requirements
of our amphiphilic lattice-gas model. The technique provides a linearly varying, tunable
velocity gradient in a direction orthogonal to the flow (see figure 1). The velocities used are
small enough to ensure that the lattice gas accurately represents the hydrodynamic flow [11].

Figure 1. Vertical (y-direction) velocity against column number (x-direction) for a 128× 128
lattice. The data points are averaged over 300 measurements starting at time step 10 000, when
the steady state has been reached. The error bars result from ensemble averaging over five
independent runs.

We analyse the simulation results in three ways. The first is direct visualization of
the growth of domains both with and without the imposition of a shear velocity. The
second, performed in order to observe any anisotropic domain growth and the formation
of a characteristic Bragg peak in the presence of shear, is a quantitative analysis of the
structure factor for the oil–water density difference:

S(k, t) = 1

N

∣∣∣∣∣∑
x

(q(x, t)− qav)eik·x

∣∣∣∣∣
2

(3)

wherek = (2π/L)(mi + nj), m, n = 1, 2, · · · , L/2, q(x, t) is the water-minus-oil order
parameter at sitex and time stept , qav is the average value of this order parameter,L is
the length of the system andN = L2 is the number of lattice sites in the system. In order to
improve the statistics and to reduce fluctuation effects we calculate the running time average
of this structure factor overT measurements at timesti = τ + Ai/T , wherei runs from 1
to T andA is the number of time steps after which we start a new running average. In our
simulations we chooseA = 4000 andT = 100. The time-averaged structure factor is then
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given as

S̄(k, τ ) = 1

T

T∑
i=1

S

(
k, τ + A i

T

)
. (4)

Thirdly, we evaluate the values of the averagex- and y-components of all the surfactant
dipole vectors in the system at each timet , namely

X2 =
∑
x

(∑
i

σ 2
ix(x)

)
(5)

and,

Y 2 =
∑
x

(∑
i

σ 2
iy(x)

)
(6)

whereσix is thex-component of the surfactant dipole vector moving in directioni at lattice
sitex, and similarlyσiy is they-component of that vector. A significant difference between
X2 andY 2 not only indicates anisotropic ordering in the system, but also provides evidence
for the formation of aligned surfactant layers between oil and water interfaces, which are
typical for the lamellar phase.

As well as undertaking simulations both with and without a shear velocity present for
the entire duration of the run, we also investigate the case where the imposed velocity
becomes non-zero only after a predetermined number of time steps of the simulation, in
order to verify that the transition to the lamellar phase can indeed be accessed from a
perturbation of the equilibrium isotropic sponge phase (as Cates and Milner assumed [6])
and is not just a shear-induced pattern of phase-separated fluid domains resulting from the
initial configuration, which is a random mixture of the three fluids [15].

3. Simulations

As already discussed, we perform simulations both with and without shear flow present
in order for a critical comparison to be made; in the former case the shear velocity is
introduced at two different stages during the simulations, either at time step 0 or after time
step 10 000. For all simulations reported here we use reduced densities for water, surfactant
and oil of 0.215, 0.1075 and 0.215 respectively, although we note that these constitute just
one set of many in their vicinity that give the behaviour we describe below. We use a 2D
lattice of sizeN × N , whereN takes the values 64, 128 and 256, with periodic boundary
conditions in both dimensions. With varying system size we also have to change the shear
velocity imposed on the left-hand and right-hand (y-direction) sides of the simulation box
in order to produce the same velocity gradient. ForN = 128 we choose velocities of−0.1
and+0.1 lattice units per time step for the left-hand and right-hand sides. Therefore we
use−0.05 and+0.05 as the velocities forN = 64 and−0.2 and+0.2 for N = 256.
In each case the initial condition is a random configuration of all three particle types in
the system. The actual performance of the simulations proved to be computationally very
intensive, especially for the larger system sizes (N = 256), where a typical run computing
40 000 time steps took 2.5 days on a Sparc Ultra Enterprise 3000.

3.1. Absence of shear

The first set of simulations are with zero shear velocity. We performed five independent
simulations over 40 000 time steps for a system sizeN = 128. The visualizations of this
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Figure 2. The time evolution of a sponge microemulsion phase in the absence of shear. The
x-axis is along the horizontal and they-axis along the vertical side of the simulation images
shown here. The system size is 128× 128.

process at selected time steps of one run are shown in figure 2. We observe the development
of the usual sponge microemulsion phase [2, 13] consisting of tubular-like domains; the
phase is isotropic in nature.

Figure 3. The time-averaged structure factorS(k, τ ) for the sponge microemulsion case with
no shear velocity. The system size is 128× 128. The values ofτ depicted here are 8000 time
steps on the left-hand side and 12 000 time steps on the right. The axes on the right-hand figure
are a mirror image of those on the left to aid visual clarity.

We have calculated the time-averaged structure factor of the oil–water density every
4000 time steps during one run, which we then ensemble averaged over five independent
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Figure 4. The time-averaged structure factorS(k, τ ) for the sponge microemulsion case with
no shear velocity. The system size is 128× 128. The values ofτ depicted here are 28 000 time
steps on the left-hand side and 36 000 time steps on the right. The axes on the right-hand figure
are a mirror image of those on the left to aid visual clarity.

runs. For typical results at different values ofτ , see figures 3 and 4. The sponge phase is
isotropic; however, the system has a preferred length scale. This length scale corresponds
to a finite wavelength, but not to a specific wave vector in the structure function. It is
clear from our plots that the growth of structure has no preference for any lattice direction:
various peaks at non-zero wave vectors and a high background intensity around a wavelength
|k| ≈ 0.11 characterize our system. When we analyse the structure factor more carefully
we find that its maximal peak is not at a constant wave vector, but at a constant wavelength,
as expected in the isotropic sponge phase.

Additionally, as we found in our previous work [2], the domain structures do not grow
in size indefinitely. Rather, what we see is the development of an equilibrium sponge phase;
however, we note that the underlying lattice dynamics is still present. The characteristic
size of the oil–water domains has stopped growing before time step 8000. The peak height
in the structure factor has then reached a level of approximately 3000 and stays at this value
for the rest of the simulation. Comparative runs with a system sizeN = 64 showed no
difference in this behaviour.

The other measurement that we make is of the sumsX2 andY 2 of the squaredx- and
y-components of all of the surfactant vectors in the system at every time step—equations (5)
and (6); again these values are calculated for later comparison with the case in which shear
is imposed. The data at various time steps are shown in table 1. In this no-shear case,
as expected, there is essentially no difference between theX2- andY 2-components during
the timescale of the simulation, this being further evidence for the presence of an isotropic
system.

In conclusion, from our results we can say that without shear flow our system quickly
reaches the isotropic sponge equilibrium phase. We will now turn our attention to the case
in which shear flow is present, with all of the other parameters in the system remaining
fixed.
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Table 1. Total X- andY -component values of surfactant dipole vectors at selected time steps
for the case of no shear andN = 128. The ratioX2:Y 2 is also shown. The error bars result
from ensemble averaging over five independent runs.

Time step X2 Y 2 X2:Y 2

0 6148± 68 6147± 52 1.000± 0.014
4000 6081± 144 6214± 166 0.979± 0.035
8000 6046± 33 6249± 91 0.968± 0.015

12 000 6161± 137 6134± 143 1.005± 0.033
16 000 6129± 160 6166± 152 0.994± 0.036
20 000 6169± 103 6126± 92 1.007± 0.023
24 000 6148± 144 6147± 169 1.000± 0.036
28 000 6135± 150 6160± 155 0.996± 0.035
32 000 6150± 101 6145± 103 1.001± 0.024
36 000 6113± 56 6182± 93 0.989± 0.017
40 000 6107± 147 6188± 155 0.987± 0.034

Figure 5. The time evolution of the lamellar phase for a system size 256×256 in the presence of
shear. Thex-axis is along the horizontal and they-axis along the vertical side of the simulation
images shown here. The imposed shear velocity is±0.2 lattice units per time step in the
y-direction,+0.2 being on the right.

3.2. Application of shear

We study the effect of shear flow on our system for three different lattice sizes, with
N = 64, 128 and 256. As discussed in section 3, we have to adjust the applied shear velocity
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in they-direction of the simulation box accordingly. We have performed a minimum of five
statistically independent runs for each of these lattice sizes in order to obtain good statistics
and consistency of our results. A typical visual result that we obtain for a system size of
256×256 is shown in figure 5. The difference from the case without shear is dramatic: the
shear causes the system to form lamellar-like objects, which finally connect by wrapping
around the simulation box and therefore—due to the periodic boundary conditions—extend
‘infinitely’ in the y-direction. The lamellae are formed correctly with oil- and water-
rich layers separated by a thin layer of surfactant and are oriented perpendicular to the
velocity gradient as found in experiments on hyperswollen lyotropic systems [4]. There is a
clear orientational ordering in the system and—since the lamellae are of equal width—also
evidence for positional ordering. It is also obvious from the visualization that the underlying
dynamics of our model causes long transient times until the lamellar phase has stabilized.

Figure 6. The time-averaged structure factorS(k, τ ) for the lamellar case with shear. The
system size is 64×64 and the shear velocity is±0.05. The values ofτ depicted here are 28 000
time steps on the left-hand side and 36 000 time steps on the right. The axes on the right-hand
figure are a mirror image of those on the left to aid visual clarity.

To gain more evidence for the formation of a lamellar phase in our system we also
repeated the calculation of the structure factor of the oil–water density. Typical results are
shown in figure 6 forN = 64, in figure 7 forN = 128 and in figure 8 forN = 256. Again,
we obtain very different behaviour from the case of no shear. In all of the simulations we
observe the formation of a clear peak in the structure factor atky = 0.0 andkx ≈ 0.18,
indicating structures that are infinitely extended in they-direction and periodic in thex-
direction. The periodic ordering in thex-direction appears to be sinusoidal rather than a
square wave. We believe that the presence of surfactant, which carries colour charge (order
parameter)q = 0, smooths the ordering and hence suppresses the higher harmonics. The
height of this peak is essentially constant after 32 000 time steps, indicating that our system
is now in an equilibrium state. In most simulations we observe another one or even two
more peaks at earlier time steps, all withky = 0.0 but differentkx†. We believe that these

† These peaks are not harmonics of the first peak, since they do not appear at integer multiples of it.
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Figure 7. The time-averaged structure factorS(k, τ ) for the lamellar case with shear. The
system size is 128× 128 and the shear velocity is±0.1. The values ofτ depicted here are
48 000 time steps on the left-hand side and 56 000 time steps on the right. The axes on the
right-hand figure are a mirror image of those on the left to aid visual clarity.

Figure 8. The time-averaged structure factorS(k, τ ) for the lamellar case with shear. The
system size is 256× 256 and the shear velocity is±0.2. The values ofτ depicted here are
40 000 time steps on the left-hand side and 48 000 time steps on the right. The axes on the
right-hand figure are a mirror image of those on the left to aid visual clarity.

peaks originate from competing lamellar widths in our system and therefore cause long
transient effects in our simulations. We have, however, run several of our simulations for
over 60 000 time steps and the peak height and position remained stable in these simulations.

The existence of a single peak inS(k), however, is not complete evidence for lamellar
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Figure 9. The time-averaged structure factor atky = 0.0 for system sizesN = 64 (solid line),
N = 128 (dashed line) andN = 256 (dotted line) plotted againstkx . The data are taken from
the left-hand plots of figures 6, 7 and 8 respectively. Note that the shift in the position of the
peak is due to the discretization of the wave vectors (compare the discussion in section 3.2).

ordering [15]. Hence, we additionally studied the behaviour of the peak as a function of
system size. For a truly ordered state, one expects sharpening and divergence of the peak
when the system size is increased indefinitely. In figure 9, where we have plottedS(kx)

at ky = 0.0 for the peaks from figures 6, 7 and 8, this behaviour is obvious. The shift
in the position of the peak at system sizeN = 256 is due to the fact that, owing to the
discretization ofkx , the value ofkx = 0.1718 is not available forN = 64 orN = 128. The
peak instead appears at the nearest wave vector, beingkx = 0.1963. From this result we
can conclude that in the case of shear flow, our system is truly in an ordered phase.

Table 2. Total X- andY -component values of surfactant dipole vectors at selected time steps
for the case of shear flow andN = 128. The ratioX2:Y 2 is also shown. The error bars are
obtained from averaging over five independent runs.

Time step X2 Y 2 X2:Y 2

0 6163± 77 6152± 51 1.001± 0.015
4000 7248± 276 5068± 234 1.430± 0.086
8000 7647± 218 4669± 229 1.638± 0.093

12 000 7320± 136 4996± 168 1.465± 0.056
16 000 7348± 184 4968± 238 1.479± 0.080
20 000 7120± 253 5196± 319 1.370± 0.097
24 000 7120± 193 5196± 221 1.370± 0.069
28 000 7083± 195 5232± 225 1.354± 0.069
32 000 7310± 100 5006± 149 1.460± 0.048
36 000 7060± 125 5256± 200 1.343± 0.056
40 000 7211± 132 5105± 219 1.412± 0.066

Finally, we also looked at the sumsX2 andY 2 of the squaredx- andy-components of all
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of the surfactant vectors (equations (5) and (6)). The values of these expressions at selected
time steps for system sizeN = 128 are shown in table 2. As expected, the surfactant
vectors starting from an isotropic distribution at time stept = 0 align perpendicularly to
the direction of shear, and henceX2 > Y 2. This indicates again the formation of lamellae
which are extended in they-direction. The corresponding values forN = 64 andN = 256
give similar results; the ratioX2:Y 2 increases slightly with system size.

Summing up our evidence, we have established that under the influence of shear our
system no longer evolves to the isotropic sponge microemulsion phase but instead to the
lamellar phase with structures which are periodic in one dimension and infinitely extended
in the other.

Figure 10. The time evolution of a ternary amphiphilic system, with shear imposed only after
time step 10 000. Thex-axis is along the horizontal and they-axis along the vertical side of the
simulation images shown here. The imposed shear velocity is±0.1 lattice units per time step
in the y-direction,+0.1 being on the right. The system size is 128× 128.

In addition, we have confirmed that the lamellar state is not simply a shear-induced
pattern of phase-separated fluid domains, but actually results from perturbing the equilibrium
sponge microemulsion phase. This is accomplished by imposing shear only after time
step 10 000 has been reached in a simulation of lattice size 128× 128, by which point
the domain structure formed is that of a sponge equilibrium phase [2, 13]; this then
comes under the influence of the shear flow. Although we now have to wait longer
for the phase transition to occur, the system still evolves from the isotropic, equilibrium
phase to the anisotropic lamellar state as we would expect (see figures 10 and 11).
Both the visualization and the structure factor show the characteristics of the sponge
phase att = 10 000, but following time stept = 80 000 the system is in the lamellar
phase.

4. Conclusions

On general theoretical grounds, one does not expect an isotropic-to-smectic transition at
equilibrium at non-zero temperature in two dimensions. However, using our hydrodynamic
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Figure 11. The time-averaged structure factorS(k, τ ) for the case with shear imposed only
after 10 000 time steps. The system size is 128×128 and the shear velocity is±0.1. The values
of τ depicted here are 10 000 time steps on the left-hand side and 120 000 time steps on the
right. The axes on the right-hand figure are a mirror image of those on the left to aid visual
clarity.

lattice-gas model, we have been able to simulate the transition from an isotropic sponge
to a lamellar phase in a two-dimensional ternary amphiphilic system under the influence
of an applied linear shear. This finding implies that shear shifts the isotropic-to-smectic
transition point from zero to non-zero temperature. Our work confirms that the model is
capable of describing complex multi-phase fluid phenomena that are currently out of reach
of other simulation methods. To link our results more fully with both experimental data and
theoretical analysis, a three-dimensional version of the present model [16] and a detailed
investigation of the complete non-equilibrium phase diagram are required. These represent
areas of ongoing and future work.
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